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HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY

Platelet PECAM-1 inhibits thrombus formation in vivo
Shahrokh Falati, Sonali Patil, Peter L. Gross, Michelle Stapleton, Glenn Merrill-Skoloff, Natasha E. Barrett, Katherine L. Pixton,
Harmut Weiler, Brian Cooley, Debra K. Newman, Peter J. Newman, Barbara C. Furie, Bruce Furie, and Jonathan M. Gibbins

Platelet endothelial cell adhesion mole-
cule-1 (PECAM-1) is a cell surface glyco-
protein receptor expressed on a range of
blood cells, including platelets, and on
vascular endothelial cells. PECAM-1 pos-
sesses adhesive and signaling proper-
ties, the latter being mediated by immuno-
receptor tyrosine-based inhibitory motifs
present on the cytoplasmic tail of the
protein. Recent studies in vitro have dem-
onstrated that PECAM-1 signaling inhib-
its the aggregation of platelets. In the
present study we have used PECAM-1–

deficient mice and radiation chimeras to
investigate the function of this receptor
in the regulation of thrombus formation.
Using intravital microscopy and laser-
induced injury to cremaster muscle arte-
rioles, we show that thrombi formed in
PECAM-1–deficient mice were larger,
formed more rapidly than in control mice,
and were more stable. Larger thrombi
were also formed in control mice that re-
ceived transplants of PECAM-1–deficient
bone marrow, in comparison to mice that
received control transplants. A ferric chlo-

ride model of thrombosis was used to
investigate thrombus formation in carotid
arteries. In PECAM-1–deficient mice the
time to 75% vessel occlusion was signifi-
cantly shorter than in control mice. These
data provide evidence for the involve-
ment of platelet PECAM-1 in the negative
regulation of thrombus formation. (Blood.
2006;107:535-541)

© 2006 by The American Society of Hematology

Introduction

Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is
a 130-kDa membrane glycoprotein that is expressed on a range of
blood cells including platelets, monocytes, neutrophils, B lympho-
cytes, some T lymphocyte subsets, and also on vascular endothelial
cells.1-4 This member of the immunoglobulin superfamily has been
reported to be associated with a wide range of functions, depending
on the cell of interest. These include transendothelial migration of
leukocytes,5-7 integrin regulation,8-16 modulation of T- and B-
lymphocyte antigen receptor signaling,17,18 B-lymphocyte develop-
ment,19 vasculogenesis,20 apoptosis,21,22 and protection against
endotoxic shock.23

Several lines of investigation have recently determined that
PECAM-1 is involved in the negative regulation of platelet
function in vitro. The activation of PECAM-1 prior to the
stimulation of platelets results in the inhibition of platelet aggrega-
tion and the inhibition of activatory signaling mechanisms.24,25 Of
particular note, therefore, are the observations that mouse platelets
deficient in PECAM-1 are hyperresponsive to stimulation with
collagen and demonstrate enhanced aggregation, secretion, and
adhesion to this agonist.26 Platelets from PECAM-1–deficient mice
have also been shown to form larger thrombi in vitro under
physiologic flow conditions.25

PECAM-1 participates in homophilic ligand-binding interac-
tions27-29; indeed, such interactions between PECAM-1 molecules

on the same cell and between cells are believed to underlie most of
its identified functions. Additional potential ligand-binding interac-
tions have been reported, such as with integrin �v�3 and CD38, but
the functional significance of these is not known.30,31 Signal
transduction through this receptor is mediated through 2 immunore-
ceptor tyrosine-based inhibitory motifs (ITIMs),32 conserved signal-
ing sequences defined by the consensus sequence L/I/V/S/T-x-Y-x-
x-L/V, that it shares with a family of inhibitory receptors of the
immune system including Fc�RIIB and killer inhibitory receptors.
The ligand-induced clustering of platelet PECAM-1,24,25 platelet
activation by collagen and thrombin,33 and fibrinogen-mediated
platelet aggregation25 results in the tyrosine phosphorylation of the
cytoplasmic ITIMs.34 This leads to the recruitment of signaling
proteins such as the tyrosine phosphatases SHP-1 and SHP-2,
which bind to the phosphotyrosine residues via src-homology 2
(SH2) domains.35,36 Little is known, particularly in platelets, of
what follows or the identity of substrates for recruited phospha-
tases, but this leads to the inhibition of activatory signaling
mechanisms.

The role of PECAM-1 signaling in hemostasis is uncertain.
Using a photochemical model of thrombosis in mice, Rosenblum et
al37,38 demonstrated that intravenous injection of anti–PECAM-1
antibodies prolonged time to the first detectable intravascular
adhesion of platelet aggregates, which was attributed to blockade
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or inhibition of adhesion to, or activation by, PECAM-1 exposed on
injured endothelium. In contrast, however, Vollmar et al39 have
reported no difference, in comparison to controls, in the time to
photochemically induced platelet adhesion and the rate of throm-
bus formation in PECAM-1–deficient mice.

The aim of this study was therefore to examine in more detail
the potential role of PECAM-1 in the regulation of thrombus
formation. We have used mice that lack the systemic expression of
PECAM-1 and chimeric PECAM-1–deficient mice to explore the
respective roles of platelet and endothelial PECAM-1 in thrombus
formation in vivo. Two distinct in vivo assays of thrombosis were
used: a high-speed intravital microscopy system that allows
real-time analysis of several parameters of laser-induced thrombus
formation, and a ferric chloride model of thrombosis with measure-
ment of blood flow using a Doppler flow probe. Our data indicate
the involvement of platelet PECAM-1 in the negative regulation of
platelet function in vivo.

Materials and methods

Materials

Antibodies. Rat anti–mouse CD41 was purchased from BD (Palo Alto,
CA) and mouse anti–human fibrin antibody (NYBT2G1) was from
Accurate Chemical and Scientific Corporation (Westbury, NY).

Mice. Transgenic PECAM-1–deficient mice were obtained from Dr
Tak Mak (Amgen Institute, Toronto, ON, Canada) and bred on a C57BL/6J
background at the Biomedical Resource Center at the Medical College of
Wisconsin. Control animals were age- and sex-matched C57BL/6J mice.

Creation of radiation chimeras

Bone marrow cells were harvested from the femurs and tibias of wild-type
or PECAM-1–deficient C57BL/6J mice into X-vivo 15 media (Atlanta
Biologicals, Norcross, GA). Small mononuclear cells were further isolated
by gradient centrifugation through Fico/Lite-LM (density 1.086 g/L;
Atlanta Biologicals) and resuspended in X-Vivo 15, and 2 � 106 cells were
injected retro-orbitally into each recipient mouse 24 hours following lethal
irradiation (11 Gy, Shepherd Mark I cesium irradiator; J. L. Shepherd, San
Fernando, CA). Recipient mice were phenotyped by assessing the level of
PECAM-1 expression on lymphocytes by flow cytometry 4 weeks follow-
ing transplantation. All chimeric mice demonstrated the transplanted
phenotype on greater than 90% of lymphocytes by this time after
transplantation.

Intravital microscopy

The design and use of a novel intravital microscopy system to analyze
thrombus formation in the mouse has been described recently.40 This model
has been shown to stimulate thrombus formation without causing exposure
of subendothelial collagens.41 Briefly, antibodies to murine CD41 were
labeled with Alexa-660 or -647 using the Alexa Fluor Protein Labeling kit
(Molecular Probes, Eugene, OR) in accordance with the manufacturer’s
instructions. Prior to labeling, Fab fragments of antibodies were prepared
using papain (Pierce, Rockford, IL). Similarly, whole antifibrin antibodies
were conjugated with Alexa-488.

Mice were anesthetized with intraperitoneal injection of 125 mg/kg
ketamine, 12.5 mg/kg xylazine, and 250 �g/kg atropine sulfate. Anesthesia
was maintained with 5 mg/kg pentobarbital as required through a jugular
vein cannula. The cremaster muscle was exteriorized, connective tissue was
removed, and an incision was made to allow the muscle to be affixed as a
single sheet over a glass slide. During preparation and throughout the
experiment the muscle preparation was hydrated with buffer (135 mM
NaCl, 4.7 mM KCl, 2.7 mM CaCl2, 18 mM NaHCO3, pH 7.4).

Labeled anti-CD41 antibodies (0.1 �g/g bodyweight) were infused
through the jugular cannula 10 minutes before beginning induction of the

first thrombus. Between 1 and 3 arterioles were visible in each cremaster
muscle preparation. Arterioles with undisrupted flow were chosen (esti-
mated shear rate between 800 and 1600 s�1) and a number of thrombi were
studied tracking up each vessel against the direction of blood flow.
Endothelial injury was induced using a pulsed nitrogen dye laser at 440 nm
that was focused onto the blood vessel wall through the microscope optics.
Widefield fluorescence (660 nm excitation wavelength, 60 ms) and
brightfield (40 ms) images were collected alternately for up to 3 minutes
after injury formation. For some experiments the accumulation of fibrin and
platelets was measured simultaneously. This was achieved by coinfusion of
fluorescently labeled anti-CD41 and antifibrin (0.5 �g/g bodyweight)
antibodies. Thrombi were visualized using an Olympus AX-70 fluorescence
microscope (Olympus, Melville, NY) with a 60� water immersion
objective lens (numeric aperture 0.9) and recorded using a Cooke SensiCam
digital camera (Cooke, Auburn Hills, MI). Images were taken in rapid-
repeating sequence to visualize platelets (excitation wavelength 660 nm, 20
ms) and fibrin (excitation wavelength 488 nm, 15 ms) followed by a
brightfield image (20 ms).

Data were collected and analyzed using the SlideBook imaging
software (Intelligent Imaging Innovations, Denver, CO), and some graphi-
cal analysis was performed using SigmaPlot (SPSS, Chicago, IL). Specifi-
cally, thrombus area and integrated thrombus fluorescence were measured
over time.

Ferric chloride–induced model of thrombosis

Ferric chloride–induced models of thrombosis have been shown to cause
substantial damage to the endothelium and exposure of underlying colla-
gens.41,42 The following method was developed by Kurz et al43 for use in
rats and has been subsequently applied to mouse studies.44,45 Adult mice
(� 8 weeks old, 22-32 g) were anesthetized by intraperitoneal injection of
pentobarbital (120 mg/kg). The carotid artery was surgically exposed and
sodium chloride solution (0.9%) was placed in the surgical wound. A
miniature ultrasound Doppler flow probe (Model:0.5VB; Transonic, Ithaca,
NY) was placed under the artery to record the baseline blood flow using a
Transonic Model T106 flow meter. Afterward, the sodium chloride was
removed from the wound and filter paper (Whatman no. 4; Florham Park,
NJ) saturated with 10% ferric chloride was applied for 3 minutes on the
adventitial surface of the artery. After 3 minutes, the filter paper was
removed, the wound was rinsed and saturated with saline solution, and the
carotid blood flow was monitored. The blood flow readings were continu-
ous. Time to thrombotic occlusion was defined as the time for the blood
flow to drop to 25% of the baseline values.

Statistical analysis

Data were checked for normal distribution using the Shapiro-Wilk normal-
ity test and statistical significance was determined using the Student t test. P
values of .05 or less were taken to indicate significant differences.

Results

Thrombi are larger in PECAM-1–deficient mice

The role of PECAM-1 in the inhibition of platelet aggregation and
signaling in vitro has been recently documented.24,25 In addition,
platelets from PECAM-1–deficient mice have been shown to be
hyperresponsive to collagen and to form larger thrombi when
flowed over collagen surfaces in vitro, further implicating PECAM-1
in the negative regulation of platelet function.25,26 In the present
study, intravital microscopy of cremaster muscle arterioles was
used to study the process of thrombus formation in real-time in
normal and PECAM-1–deficient mice.

Thrombus formation was stimulated by laser-induced injury in
arterioles in control and PECAM-1–deficient mice and studied in
real time by assessing the accumulation of platelets fluorescently
labeled with Alexa-660–conjugated anti-CD41 antibodies into the
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developing thrombus. With both control and PECAM-1–deficient
mice, the degree of correlation between the time of initial thrombus
formation and either the amount of time elapsed since the laser was
fired or the duration of laser firing was variable. Similarly, the rate
of thrombus formation and the size and shape of the thrombus
formed was variable in mice of different genotypes. Multiple
thrombi in up to 6 separate mice were therefore analyzed for
quantitative differences between control and PECAM-1–deficient
mice to be assessed.

Thrombus size was assessed in real time by measuring the area
occupied by the thrombus and integrated thrombus fluorescence.
Since thrombus area measurements may be affected by the position
of the focal plane during data collection and the orientation of the
thrombus within the blood vessel, integrated thrombus fluores-
cence was incorporated since this may be expected to produce more
precise quantitative data. This is a measure of total fluorescence
and is proportional to the number of platelets present in a thrombus
at a given time.

Blinded analysis of the area occupied by thrombi and integrated
thrombus fluorescence over time was performed using SlideBook
image analysis software. Thrombus sizes were analyzed for up to
160 seconds following the initiation of thrombus formation and
expressed as plots of thrombus area (�m2) or arbitrary fluorescence
levels against time. Median thrombus area and integrated thrombus
fluorescence are displayed over a period of 120 seconds following
thrombus initiation in Figure 1A. Thrombus area and integrated
fluorescence levels were observed to be larger in the PECAM-1–
deficient mice at all time points studied following initiation of
thrombus formation (control: n � 14 thrombi; PECAM-1–defi-
cient: n � 20 thrombi). The profiles of median thrombus area and
integrated thrombus fluorescence levels over this time period were
similar. As an alternative method of analysis, thrombus area or
fluorescence levels were plotted over time and areas under curves
calculated. Analysis of mean data indicated that thrombi were
significantly larger in PECAM-1–deficient mice (control: n � 11
thrombi; PECAM-1–deficient: n � 12 thrombi; P 	 .05).

Analysis of the initial rate of increase in median integrated
thrombus fluorescence over the first 40 seconds of thrombus
development indicates faster kinetics (approximately double the
rate) of initial thrombus growth in the PECAM-1–deficient mice.
Similar increased initial kinetics were observed for both integrated
fluorescence and thrombus area (Figure 1A).

To assess thrombus stability, the duration for which each
thrombus remained above 50% of its maximal area or fluorescence
intensity was assessed. Mean duration values are shown in Figure
1B and demonstrate significantly greater thrombus stability in
PECAM-1–deficient mice. The formation of long thrombi extend-
ing along the endothelium downstream from the site of vessel
damage appeared more prevalent in PECAM-1–deficient mice.
Particularly contrasting examples of this are shown in Figure 2,
although it should be noted that as with other aspects of the analysis
of thrombi, substantial variability was observed. Videos showing
thrombus formation and corresponding to thrombi shown in Figure
2 are available as supplemental Videos S1 and S2 (see the
Supplemental Videos link at the top of the online article, at the
Blood website).

The contributions of platelet and endothelial cell PECAM-1
in the regulation of thrombus formation

In PECAM-1–deficient mice, PECAM-1 is absent from platelets
and endothelial cells. It was therefore unclear whether the en-
hanced thrombus formation observed in these mice was due to the
absence of PECAM-1 on platelets, endothelial cells, or both.
Experiments were therefore performed using chimeric mice that
had been irradiated and that received transplants of either normal or
PECAM-1–deficient bone marrow. These included wild-type (WT)

Figure 2. Imaging of thrombus formation in control and PECAM-1–deficient
platelets. (A) Control and (B) PECAM-1–deficient mice were infused with Alexa-660–
labeled anti-CD41 antibody Fab fragments before thrombus induction in cremaster
muscle arterioles using a nitrogen dye laser. Thrombus formation was studied over a
period of 3 minutes using a combination of widefield fluorescence and brightfield
microscopy. Arrows indicate the direction of blood flow and blue arrowheads indicate
the position of laser-induced endothelial damage. Videos representing the formation
of thrombi shown in this figure are available as supplemental Videos S1 and S2.

Figure 1. Thrombi are larger in PECAM-1–deficient mice. (A) Median thrombus
integrated fluorescence (anti-CD41) (Ai) and area (�m2) (Aii) were calculated for
thrombi formed in control (
/
) and PECAM-1–deficient (�/�) mice and are plotted
against time for a duration of 120 seconds following thrombus initiation (control:
n � 14 thrombi; PECAM-1–deficient: n � 20 thrombi). (B) As a measure of thrombus
stability, the durations for which thrombi remained above 50% of maximal integrated
fluorescence (anti-CD41) (Bi) and thrombus area (Bii) were calculated, and mean
values � SEM are shown. (Bi) *P � .04; (Bii) *P � .02.
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mice that received transplants of WT bone marrow, PECAM-1–
deficient mice that received transplants of WT bone marrow, and
WT mice that received transplants of PECAM-1–deficient bone
marrow. Successful bone marrow engraftment was verified by flow
cytometric analysis of lymphocytes for expression of PECAM-1
(Figure 3A). Following laser-induced stimulation of thrombus
formation, the recruitment of platelets into thrombi was measured
by intravital microscopy. Blinded analyses of the area occupied by
thrombi and integrated thrombus fluorescence over time were
performed as described for full PECAM-1 knockout mice. Median
thrombus area and integrated thrombus fluorescence are displayed
(Figure 3B) over a period of 120 seconds following thrombus
initiation. Thrombus area and integrated anti-CD41 (platelets)
fluorescence levels were found to be larger in WT mice that
received transplants of PECAM-1–deficient platelets in compari-
son to WT mice that received transplants of WT bone marrow.
Faster kinetics of thrombi formation were observed from the outset
of measurements, and larger thrombi were observed for the

duration of data collection. These results implicate platelet
PECAM-1 in the more rapid formation of larger platelet thrombi in
full PECAM-1 knockout mice relative to wild-type mice (Figure 1).
By contrast, enlarged thrombi and initial faster kinetics were not
observed in PECAM-1–deficient mice that received transplants of
WT bone marrow. In these mice similar profiles to those observed
in WT mice that received transplants of WT bone marrow were
observed until around 90 seconds following thrombus initiation,
after which thrombi appeared moderately and transiently larger.

To begin to explore the mechanisms that underlie the effects
observed in PECAM-1–deficient mice, the accumulation of fibrin
in thrombi was measured simultaneously with platelet accumula-
tion in mice that received transplants. Median thrombus fibrin
formation (integrated antifibrin fluorescence) was similar in each of
the mouse types that received transplants (Figure 3C). Fibrin
accumulation was approximately linear over the 120 seconds of
thrombus formation shown.

Time to blood vessel occlusion is decreased
in PECAM-1–deficient platelets

A second model of thrombosis was used in control and PECAM-1–
deficient mice. The additional use of the ferric chloride model of
thrombosis enabled thrombus formation to be studied in larger
vessels and at high flow rates. These assays were also performed
blinded for mouse genotype. Thrombus formation was measured in
the carotid artery using an ultrasound Doppler flow probe, follow-
ing exposure to ferric chloride solution. The time to 75% vessel
occlusion was measured (ie, until blood flow was reduced to 25%
of baseline value) and results are shown in Figure 4. The mean time
to 75% occlusion (� standard deviation) for PECAM-1–deficient
mice was 8.1 � 1.1 minutes (n � 12), which was significantly
shorter (P 	 .03) than that observed in wild-type mice (10.0 � 2.7
minutes, n � 14). The overall magnitude of differences was modest,
with results using this model of thrombosis in several wild-type mice
appearing comparable to PECAM-1–deficient mice.

Figure 4. Quantitative analysis of ferric chloride (FeCl3)–induced thrombus
formation in the carotid arteries of PECAM-1–deficient and wild-type mice.
Filter papers saturated with 10% FeCl3 were applied to exposed carotid arteries for 3
minutes to induce acute injury to the endothelium, after which the vessels were rinsed
and saturated with saline solution. Blood flow was monitored with a miniature
Ultrasound Doppler flow probe placed under the exposed artery and recorded using a
Transonic Model T106 flow meter. The time for blood flow to drop to 25% of baseline
values (75% occlusion) was determined. Each data point reflects the time for the left
carotid artery to become 75% occluded in PECAM-1–deficient (left) or wild-type
(right) animals. The solid line through each data set represents the mean time to 75%
occlusion � standard deviations. The mean time to 75% occlusion (� standard
deviation) for PECAM-1–deficient mice was 8.1 � 1.1 minutes (n � 12), which was
significantly shorter (P 	 .03) than that observed in wild-type mice (10.0 � 2.7
minutes, n � 14).

Figure 3. The contributions of platelet and endothelial cell PECAM-1 to the
regulation of thrombus formation. (A) Chimeric mice were generated by bone
marrow transplantation and, following recovery, successful engraftment was verified
by flow cytometric analysis to detect the presence or absence of PECAM-1 on
lymphocytes from WT mice that received transplants of WT bone marrow (Ai), WT
mice that received transplants of PECAM-1–deficient bone marrow (Aii), and
PECAM-1–deficient mice that received transplants of WT bone marrow (Aiii). (B)
Median anti-CD41 integrated fluorescence (Bi) and thrombus area (�m2) (Bii) were
calculated for thrombi formed in chimeric mice generated by bone marrow transplan-
tation and are plotted against time for a duration of 120 seconds following thrombus
initiation (Bi: WT mice with WT BM: n � 30, PECAM-1–deficient mice with WT bone
marrow: n � 33, WT mice with PECAM-1–deficient bone marrow: n � 14; ii: WT mice
with WT BM: n � 26, PECAM-1–deficient mice with WT bone marrow: n � 33, WT
mice with PECAM-1–deficient bone marrow: n � 14). KO indicates knock-out. (C)
Fibrin deposition in thrombi was measured simultaneously with platelet accumulation
for each type of mouse chimera that received transplants and is plotted against time
for the duration of 120 seconds following thrombus initiation (WT mice with WT BM:
n � 30; PECAM-1–deficient mice with WT bone marrow: n � 32; WT mice with
PECAM-1–deficient bone marrow: n � 14).
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Discussion

Immunelike cell signaling is central to the activation of platelets
through the collagen receptor GPVI that signals via an immunore-
ceptor tyrosine-based activatory motif (ITAM) present on an
associated protein, the FcR �-chain.46-48 ITAM signaling has also
been implicated in activation of platelets through the immunoglobu-
lin G receptor Fc�RIIA49 and the GPIb-V-IX complex.50,51 Studies
in vitro have indicated that the relationship between ITAM and
ITIM signaling may be important for the regulation of platelets.
Stimulation of PECAM-1 has been shown to inhibit platelet
signaling and function initiated by a range of receptors, including
the GPVI, GPIb-V-IX complex, and Fc�RIIA.24,25,52,53 PECAM-1
has also been found to inhibit platelet activation stimulated by
G-protein–coupled receptor agonists such as thrombin, albeit to a
lesser degree.22

In the present study we have employed PECAM-1–deficient
mice to investigate the role of PECAM-1 in thrombus formation in
vivo. The use of a highly sensitive intravital microscopic technique
to study thrombus formation in real time, and a ferric chloride
model of thrombosis, has enabled us to establish a role for this
molecule in the regulation of thrombus formation in vivo.

Thrombi formed in cremaster muscle arterioles upon laser
injury in PECAM-1–deficient mice were significantly larger than
those formed in control mice. Faster kinetics of thrombus forma-
tion were observed in the PECAM-1–deficient mice, and the
difference in thrombus size appeared constant throughout the time
that thrombus development was measured. In addition, thrombi
formed in the PECAM-1 knockout mice appeared to have
greater stability.

Enhanced thrombus formation in PECAM-1 knockout mice
may be due to a lack of PECAM-1 on platelets (and leukocytes), or
on endothelial cells, or its absence on both. To address this,
laser-induced thrombus formation was examined in chimeric mice
generated through bone marrow transplantation. WT mice received
transplants of PECAM-1–deficient bone marrow to examine the
potential role for platelet PECAM-1 in the regulation of thrombus
formation. In comparison to control mice (WT mice that received
transplants of WT bone marrow), thrombi formed more rapidly and
were larger (Figure 3B). The level of enhanced thrombus develop-
ment was similar to that observed in full PECAM-1 knockout mice
in comparison with controls (Figure 1A). It should be noted that
experiments in Figures 1 and 3 were performed separately using
different reagents. Direct comparisons of absolute levels of throm-
bus fluorescence or area should not therefore be made. PECAM-1–
deficient mice received transplants of WT bone marrow to examine
the effect of PECAM-1 deficiency on endothelial cells with normal
levels of PECAM-1 on platelets. The rate of thrombus formation
and size in these mice were similar to control mice (Figure 3B).
These data implicate platelet PECAM-1 in the elevated platelet
responses observed in full knockout mice (Figure 1). Endothelial
cell PECAM-1 did not appear to be involved in the initial elevated
phase of thrombus formation observed in PECAM-1 knockout
mice, although transiently enhanced thrombus formation at later
time points in PECAM-1–deficient mice that received transplants
of WT bone marrow may indicate a more complex relationship
between platelet and endothelial PECAM-1 at different phases of
thrombus formation. PECAM-1–deficient mice have been reported
to have extended tail-bleeding times that were not rescued by
transplantation of WT hematopoietic precursors, indicating an
endothelial defect in these mice that results in excessive bleeding.54

This may indicate positive and negative roles for PECAM-1 in
thrombus formation. In contrast, however, Vollmar et al39 measured
normal bleeding times in PECAM-1–deficient mice. The reason for
the discrepancy between these studies is unclear but is likely to
reflect differences in experimental procedures.

Upon damage to the endothelium, coagulation is triggered
through the exposure of tissue factor in the blood vessel wall and/or
recruitment on circulating microparticles,55-57 resulting in thrombin
generation and fibrin formation within the thrombus. Fibrin
deposition in thrombi was measured simultaneously with platelet
accumulation in mice that received bone marrow transplants. The
levels and rate of fibrin formation in thrombi were found to be very
similar between the 3 mouse types (Figure 3C). This indicates that
larger thrombi in PECAM-1–deficient mice are due to hyperreac-
tive platelets rather than enhanced activation of the endothelium or
coagulation system.

The laser-induced injury model used has been characterized and
found to result in insufficient endothelial damage to cause the
exposure of subendothelial collagens.41 This is consistent with
direct laser-induced injury of vessels of the mouse ear described by
Rosen et al.58 In our experiments, therefore, it is unlikely that the
trigger for platelet thrombus formation was platelet-collagen
interaction, either through von Willebrand factor–GPIb-V-IX bind-
ing or direct platelet interactions through integrin �2�1 or GPVI.
More work is required to understand how platelets become
activated and recruited to a thrombus in this model, although the
reported inhibitory effect of a phosphodiesterase 3A inhibitor on
initial platelet accumulation59 indicates an important role of platelet
signaling for recruitment and thrombus formation.

A ferric chloride model of thrombosis was used as an alternative
approach to examine thrombus formation in a larger artery in
PECAM-1–deficient mice. A modest but significant decrease in the
time to 75% blood vessel occlusion was recorded in PECAM-1–
deficient mice. Ferric chloride models of thrombosis have been
shown to cause transmural cell necrosis and substantial damage to
the endothelium and, consequently, the exposure of subendothelial
collagens (reviewed recently by Day et al42). Indeed, thrombi that
form in a ferric chloride model of thrombosis have been reported to
involve platelet GPVI, consistent with this model causing the
exposure of subendothelial collagens.41

Since laser-induced thrombosis does not involve collagen
exposure, it is possible that PECAM-1 is involved in the negative
regulation in vivo of thrombin-stimulated platelet activation and
thrombus development. Alternative explanations for this phenom-
enon include PECAM-1–mediated inhibition of signaling stimu-
lated by immobilized fibrinogen through integrin �IIb�3 or
inhibition of responses to secondary mediators released by acti-
vated platelets. The involvement of GPVI in thrombus formation in
the ferric chloride model is compatible with the role of PECAM-1
in the inhibition of collagen-mediated platelet activation observed
in vitro, although the inhibition in vivo of additional mechanisms
of platelet activation cannot be excluded.

Our results implicate PECAM-1 in the negative regulation of
platelet function in small cremasteric arterioles and in carotid
arteries. This is consistent with the observation of Rosenblum et
al37,38 that intravenous injection of anti–PECAM-1 antibodies
delayed platelet adhesion and aggregation in mice, using a
photochemical model of thrombosis shown not to denude the
endothelium. Interference by anti–PECAM-1 antibodies in platelet
adhesion/aggregation at sites of injury was proposed to underlie
this effect, although we would suggest this may have been due to
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the stimulation of PECAM-1 signaling rather than the inhibition of
adhesive interactions.

In most models of thrombosis the mechanism of thrombus
formation is not well characterized. This has repercussions in the
comparison of data produced using different thrombosis models
and potential inconsistencies between studies. For example, our
data differ from those of Vollmar et al39 who reported a lack of
function of PECAM-1 in photochemically induced vascular throm-
bosis in cremasteric vessels. Their inability to detect any differ-
ences in the PECAM-1–deficient mice probably reflects the
different experimental systems employed, methods of detection
and analysis, and lower sensitivity. It is also possible that different
in vivo models of thrombosis may produce different results
depending on the combination of prothrombotic factors and/or
negative regulators that are exposed, released, or generated. Given
this, it is possible that the role of PECAM-1 in vivo may also be
dependent on the nature of an injury and the activatory factors
present, between healthy or diseased vessels and the position of
platelets within a thrombus.

We have speculated previously that the ligation and thereby
oligomerization of PECAM-1 between platelets and endothelial
cells at the periphery of a developing thrombus may prevent
platelet activation and therefore limit the spread and size of the
developing thrombus.24 It has also been reported that activation of
PECAM-1 on endothelial cells results in the stimulation of
secretion of prostacyclin, which would also inhibit platelet activa-
tion.60 While our results indicate platelet PECAM-1 to be involved
in the regulation of thrombus growth, a role for endothelial
PECAM-1 in the early phase of thrombus development is not
supported by the results of this study. The more rapid kinetics of

thrombus formation observed in PECAM-1–deficient mice sug-
gests that PECAM-1 in circulating platelets in normal mice is
primed for its inhibitory role. Whether PECAM-1 ligation is
required for the inhibitory function of this molecule in vivo and
where this may occur remains to be addressed. It is presently
unclear whether leukocyte PECAM-1 may also contribute to
thrombus formation, since the ablation strategy used in these
experiments did not target platelet PECAM-1 selectively. While
leukocyte rolling and recruitment to laser-induced thrombi gener-
ally require longer duration of thrombus formation than measured
in this study, the potential role of PECAM-1 in this deserves future
scrutiny.

Our data suggest that the balance between ITIM and activatory
signaling in platelets may regulate the balance between platelet
inhibition and activation. This may be important to determine the
stimulation threshold level for thrombus formation and to ensure
that the thrombus is restricted to the initial site of injury.
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